Adversarial Machine Learning

GPTKB entity

Statements (47)
Predicate Object
gptkbp:instanceOf Machine Learning
gptkbp:hasCitations Data Poisoning
Interpretability
Model Robustness
Transferability
Evasion Attacks
gptkbp:hasImpactOn Regulatory Compliance
Model Performance
AI Safety
User Privacy
Trust in AI
gptkbp:hasTechnology Adversarial Training
Adversarial Examples
Defensive Distillation
Gradient Masking
Feature Squeezing
https://www.w3.org/2000/01/rdf-schema#label Adversarial Machine Learning
gptkbp:isAvenueFor gptkb:Autonomous_Vehicles
Fraud Detection
Speech Recognition
Spam Detection
Facial_Recognition
gptkbp:isChallengedBy Adversarial Attacks
Scalability Issues
Lack of Standardization
Model Overfitting
Data Integrity Issues
gptkbp:isExploredIn Policy Making
Industry Applications
Public Awareness
Ethical Discussions
Academic_Research
gptkbp:isRelatedTo Deep Learning
Ethics
Neural Networks
Security
Robustness
gptkbp:isSupportedBy Conferences
Online Courses
Research Papers
Workshops
Open Source Tools
gptkbp:isUsedIn Cybersecurity
Natural Language Processing
Robotics
Computer_Vision
gptkbp:isVisitedBy Researchers