Adam optimization algorithm

GPTKB entity

Statements (37)
Predicate Object
gptkbp:instanceOf gptkb:model
mathematical optimization
gptkbp:advantage computationally efficient
may converge to suboptimal solutions
can have poor generalization in some cases
requires little memory
well suited for problems with large data
well suited for problems with many parameters
gptkbp:category gradient-based optimization
stochastic optimization
gptkbp:commonIn computer vision
deep learning
natural language processing
gptkbp:defaultBeta1 0.9
gptkbp:defaultBeta2 0.999
gptkbp:defaultEpsilon 1e-8
gptkbp:defaultLearningRate 0.001
gptkbp:fullName gptkb:Adaptive_Moment_Estimation
https://www.w3.org/2000/01/rdf-schema#label Adam optimization algorithm
gptkbp:introduced gptkb:Diederik_P._Kingma
gptkb:Jimmy_Ba
gptkbp:introducedIn 2014
gptkbp:parameter learning rate
beta1
beta2
epsilon
gptkbp:publishedIn gptkb:arXiv:1412.6980
gptkbp:relatedTo gptkb:AdaGrad
gptkb:RMSProp
SGD
gptkbp:usedFor training neural networks
gptkbp:uses momentum
exponentially decaying averages of past squared gradients
adaptive learning rates
exponentially decaying averages of past gradients
gptkbp:bfsParent gptkb:Adam:_A_Method_for_Stochastic_Optimization
gptkbp:bfsLayer 7