Adam optimization algorithm

GPTKB entity

Statements (57)
Predicate Object
gptkbp:instance_of gptkb:Artificial_Intelligence
gptkbp:can_be_combined_with RMSProp
momentum optimization
gptkbp:can_handle sparse gradients
gptkbp:developed_by gptkb:2014
gptkb:D._P._Kingma
gptkbp:has_function beta1
beta2
epsilon
learning rate
https://www.w3.org/2000/01/rdf-schema#label Adam optimization algorithm
gptkbp:improves gptkb:Adagrad
SGD
RMSProp
gptkbp:is_based_on first moment estimate
second moment estimate
gptkbp:is_compared_to other optimization algorithms
gptkbp:is_compatible_with online learning
transfer learning
mini-batch training
gptkbp:is_considered_as state-of-the-art
gptkbp:is_described_as gptkb:Documentation
research papers
online tutorials
gptkbp:is_evaluated_by accuracy
cross-validation
grid search
random search
validation loss
training loss
gptkbp:is_implemented_in gptkb:Tensor_Flow
gptkb:Keras
gptkb:Py_Torch
gptkbp:is_less_sensitive_to initialization
gptkbp:is_often_used_in computer vision
natural language processing
gptkbp:is_part_of model optimization
training process
gptkbp:is_popular_in gptkb:neural_networks
gptkbp:is_recommended_by research settings
production settings
gptkbp:is_robust_to noisy gradients
gptkbp:is_used_for backpropagation
gradient descent
gptkbp:is_used_in gptkb:machine_learning
deep learning
gptkbp:provides faster convergence
gptkbp:requires hyperparameter tuning
gptkbp:suitable_for large datasets
non-stationary objectives
very small datasets
highly oscillatory functions
very deep networks
ill-conditioned problems
gptkbp:uses adaptive learning rates
gptkbp:bfsParent gptkb:Ada_Max
gptkbp:bfsLayer 6