AdaBoost algorithm

GPTKB entity

Statements (51)
Predicate Object
gptkbp:instanceOf gptkb:model
gptkbp:application bioinformatics
fraud detection
face detection
text classification
gptkbp:category ensemble learning
gptkbp:citation high
gptkbp:combines weak learners
gptkbp:commonWeakLearner decision stump
gptkbp:developedBy gptkb:Robert_Schapire
gptkb:Yoav_Freund
gptkbp:feature iterative process
assigns weights to misclassified samples
can overfit with too many weak learners
focuses on hard-to-classify cases
no parameter tuning required for base learners
reduces bias and variance
works with binary and multiclass classification
gptkbp:form additive modeling
forward stagewise modeling
gptkbp:fullName gptkb:Adaptive_Boosting
https://www.w3.org/2000/01/rdf-schema#label AdaBoost algorithm
gptkbp:influenced gptkb:CatBoost
gptkb:LightGBM
gptkb:XGBoost
Gradient Boosting Machines
gptkbp:input labeled data
gptkbp:introducedIn 1996
gptkbp:limitation sensitive to outliers
sensitive to noisy data
gptkbp:method boosting
gptkbp:notablePaperAuthors gptkb:Robert_Schapire
gptkb:Yoav_Freund
gptkbp:notablePaperYear 1997
gptkbp:notablePublication gptkb:A_Decision-Theoretic_Generalization_of_On-Line_Learning_and_an_Application_to_Boosting
gptkbp:openSource gptkb:XGBoost
gptkb:Weka
gptkb:scikit-learn
R
gptkbp:output strong classifier
weighted sum of weak learners
gptkbp:publishedIn gptkb:Journal_of_Computer_and_System_Sciences
gptkbp:reduces exponential loss
gptkbp:relatedTo gptkb:Bagging
gptkb:Gradient_Boosting
gptkbp:supportsAlgorithm supervised learning
gptkbp:usedFor gptkb:dictionary
regression
gptkbp:bfsParent gptkb:Robert_Schapire
gptkb:Yoav_Freund
gptkbp:bfsLayer 7