ARIMA model

GPTKB entity

Statements (49)
Predicate Object
gptkbp:instanceOf statistical analysis
gptkbp:alternativeTo gptkb:exponential_smoothing
state space models
gptkbp:appliesTo economics
engineering
finance
weather forecasting
sales forecasting
gptkbp:assumes linearity
normality of errors
no autocorrelation in residuals
gptkbp:canBe maximum likelihood estimation
least squares
gptkbp:component autoregressive (AR) part
integrated (I) part
moving average (MA) part
gptkbp:extendsTo gptkb:SARIMA_model
seasonal ARIMA (SARIMA)
ARIMAX (with exogenous variables)
ARIMAX model
vector ARIMA (VARIMA)
gptkbp:field gptkb:machine_learning
statistics
econometrics
gptkbp:fullName AutoRegressive Integrated Moving Average model
gptkbp:hasModel non-stationary time series
https://www.w3.org/2000/01/rdf-schema#label ARIMA model
gptkbp:introduced gptkb:George_Box
gptkb:Gwilym_Jenkins
gptkbp:introducedIn 1970
gptkbp:output confidence intervals
forecasted values
gptkbp:parameter d (degree of differencing)
p (order of AR part)
q (order of MA part)
gptkbp:publishedIn gptkb:Time_Series_Analysis:_Forecasting_and_Control
gptkbp:relatedTo gptkb:Box-Jenkins_methodology
stationarity
differencing
autocorrelation function (ACF)
partial autocorrelation function (PACF)
gptkbp:requires stationarity (after differencing)
gptkbp:software gptkb:SAS
gptkb:Python_(statsmodels)
gptkb:SPSS
R
gptkbp:usedFor time series forecasting
gptkbp:bfsParent gptkb:Forecasting_in_Business_and_Economics
gptkbp:bfsLayer 6