WGAN-Gradient Penalty

GPTKB entity

Statements (52)
Predicate Object
gptkbp:instanceOf gptkb:Cloud_Computing_Service
gptkbp:addresses mode collapse
gptkbp:appliesTo machine learning
gptkbp:developedBy Gulrajani_et_al.
gptkbp:enhances stability of training
gptkbp:hasImpactOn adversarial training
https://www.w3.org/2000/01/rdf-schema#label WGAN-Gradient Penalty
gptkbp:improves gptkb:Wasserstein_GAN
sample quality
gptkbp:isAttendedBy research institutions
tech companies
gptkbp:isBasedOn Wasserstein distance
Kantorovich-Rubinstein_duality
gptkbp:isCitedBy numerous research papers
gptkbp:isDiscussedIn machine learning conferences
AI journals
gptkbp:isEvaluatedBy gptkb:ImageNet
gptkb:CIFAR-10
MNIST
Fashion-MNIST
CelebA
LSUN
gptkbp:isInfluencedBy GANs
Variational Autoencoders
normalizing flows
gptkbp:isLocatedIn gptkb:PyTorch
TensorFlow
gptkbp:isPartOf DCGAN
AI research community
generative modeling
computer vision domain
GAN_family
LSGAN
SAGAN
gptkbp:isRelatedTo deep learning
gptkbp:isSupportedBy NVIDIA GPUs
TPUs
gptkbp:isUsedFor data augmentation
text-to-image synthesis
video generation
image synthesis
style transfer
gptkbp:isUsedIn unsupervised learning
transfer learning
image generation
semi-supervised learning
gptkbp:relatedTo traditional GANs
gptkbp:requires hyperparameter tuning
Lipschitz_constraint
gptkbp:uses gradient penalty
gptkbp:utilizes critic network
gptkbp:yearEstablished 2017