Statements (56)
Predicate | Object |
---|---|
gptkbp:instance_of |
gptkb:software_framework
|
gptkbp:bfsLayer |
3
|
gptkbp:bfsParent |
gptkb:temple
|
gptkbp:allows |
automatic feature engineering
|
gptkbp:can_create |
explanatory reports
multiple model candidates |
gptkbp:controls |
unstructured data
structured data |
gptkbp:deployment |
machine learning models
|
gptkbp:developed_by |
gptkb:server
|
https://www.w3.org/2000/01/rdf-schema#label |
Sage Maker Autopilot
|
gptkbp:integrates_with |
gptkb:aircraft
gptkb:temple gptkb:Amazon_RDS gptkb:Amazon_Redshift gptkb:Amazon_S3 |
gptkbp:intelligence |
model selection process
|
gptkbp:is_accessible_by |
gptkb:API
gptkb:AWS_Management_Console AWSCLI AWSSD Ks |
gptkbp:is_available_in |
multiple AWS regions
|
gptkbp:is_effective_against |
small to medium businesses
|
gptkbp:is_optimized_for |
cloud environments
|
gptkbp:is_part_of |
gptkb:AWS_Machine_Learning_suite
AWS ecosystem AWSAI services |
gptkbp:is_scalable |
large datasets
|
gptkbp:is_used_by |
enterprises
|
gptkbp:is_used_for |
predictive analytics
time series forecasting anomaly detection |
gptkbp:is_used_in |
real-time applications
batch processing applications |
gptkbp:offers |
data visualization tools
security features hyperparameter optimization custom model tuning |
gptkbp:provides |
model explainability features
automated machine learning capabilities model retraining capabilities model performance metrics data import/export features data labeling capabilities Jupyter notebook integration |
gptkbp:suitable_for |
gptkb:software
business analysts data scientists |
gptkbp:supports |
data preprocessing
classification tasks model evaluation compliance standards model training regression tasks multi-model endpoints |
gptkbp:user_experience |
non-experts
|