SageMaker Notebooks

GPTKB entity

Statements (59)
Predicate Object
gptkbp:instanceOf Amazon SageMaker
gptkbp:allows data scientists to build and train machine learning models
gptkbp:basedOn usage
gptkbp:collaborates_with other users
gptkbp:engineConfiguration custom_Docker_containers
https://www.w3.org/2000/01/rdf-schema#label SageMaker Notebooks
gptkbp:integration gptkb:Amazon_S3
gptkbp:is_accessible_by gptkb:AWS_Management_Console
JupyterLab_interface
Jupyter_Notebook_interface
gptkbp:is_available_in multiple_AWS_regions
gptkbp:is_designed_to machine learning workflows
gptkbp:is_integrated_with gptkb:AWS_Glue
gptkb:AWS_Lambda
Amazon Redshift
gptkbp:is_part_of AWS_ecosystem
gptkbp:is_used_in data visualization
hyperparameter tuning
model evaluation
data exploration
model training
transform data
share insights
clean data
create batch transform jobs
create training jobs
deploy models
document experiments
monitor models
prepare data
run experiments
visualize model performance
create_dashboards
gptkbp:launched gptkb:AWS_CLI
AWS_SDKs
gptkbp:maintainedBy gptkb:Amazon_Web_Services
gptkbp:offers pre-built machine learning algorithms
gptkbp:performance cloud computing
large datasets
gptkbp:provides automatic scaling
collaborative features
interactive data analysis
built-in security features
Jupyter Notebook environment
notebook lifecycle configuration
gptkbp:suitableFor real-time inference
batch inference
gptkbp:supports gptkb:PyTorch
gptkb:Julia
Python
TensorFlow
R
multiple instance types
version control
MXNet
data import from various sources
IAM_roles
GPU_instances
CPU_instances