gptkbp:instance_of
|
gptkb:neural_networks
|
gptkbp:characteristic
|
gptkb:gates
cell state
memory cell
|
gptkbp:developed_by
|
gptkb:Jürgen_Schmidhuber
gptkb:Sepp_Hochreiter
|
gptkbp:has_applications_in
|
gptkb:vehicles
chatbots
recommendation systems
|
gptkbp:has_feature
|
forget gate
input gate
output gate
|
gptkbp:has_limitations
|
computationally intensive
difficult to interpret
requires large datasets
|
https://www.w3.org/2000/01/rdf-schema#label
|
Long Short-Term Memory (LSTM)
|
gptkbp:improves
|
vanishing gradient problem
|
gptkbp:introduced_in
|
gptkb:1997
|
gptkbp:is_applied_in
|
speech recognition
video analysis
image captioning
|
gptkbp:is_compared_to
|
gptkb:Gated_Recurrent_Unit_(GRU)
|
gptkbp:is_evaluated_by
|
accuracy
loss function
training time
|
gptkbp:is_influenced_by
|
gptkb:infrastructure
input sequence length
training parameters
|
gptkbp:is_optimized_for
|
long-range dependencies
|
gptkbp:is_part_of
|
gptkb:neural_networks
|
gptkbp:is_popular_in
|
gptkb:robotics
financial forecasting
time series analysis
healthcare analytics
|
gptkbp:is_related_to
|
attention mechanisms
transformer models
sequence-to-sequence models
|
gptkbp:is_trained_in
|
Stochastic Gradient Descent
Backpropagation Through Time
|
gptkbp:is_used_for
|
language translation
sentiment analysis
text generation
|
gptkbp:is_used_in
|
gptkb:Tensor_Flow
gptkb:Keras
gptkb:Py_Torch
|
gptkbp:related_to
|
gptkb:Artificial_Intelligence
gptkb:machine_learning
gptkb:Deep_Learning
|
gptkbp:used_for
|
natural language processing
time series forecasting
sequence prediction
|
gptkbp:bfsParent
|
gptkb:Jürgen_Schmidhuber
|
gptkbp:bfsLayer
|
3
|