Le Net architecture

GPTKB entity

Statements (51)
Predicate Object
gptkbp:instance_of gptkb:television_channel
gptkbp:bfsLayer 3
gptkbp:bfsParent gptkb:Yann_Le_Cun
gptkbp:applies_to Facial recognition
Image classification
Object detection
gptkbp:architectural_style Feedforward neural network
gptkbp:consists_of Convolutional layers
Fully connected layers
Pooling layers
gptkbp:developed_by gptkb:Yann_Le_Cun
gptkbp:has_method Average pooling
Batch size
Learning rate
Number of epochs
Subsampling
gptkbp:has_sequel Subsampling layer
gptkbp:has_skin Output layer
Convolutional layer
Fully connected layer
Subsampling layer
gptkbp:has_transformation Sigmoid
Tanh
https://www.w3.org/2000/01/rdf-schema#label Le Net architecture
gptkbp:influenced_by Backpropagation algorithm
gptkbp:input_output 32x32 pixels
gptkbp:is_considered_as Pioneering work in CN Ns
gptkbp:is_implemented_in gptkb:Graphics_Processing_Unit
gptkb:Keras
gptkb:Py_Torch
gptkbp:is_popular_in Deep learning community
gptkbp:is_related_to gptkb:Artificial_Intelligence
Machine learning
Computer vision
gptkbp:is_used_for Handwritten digit recognition
gptkbp:is_used_in Research papers
Industry applications
gptkbp:losses Mean squared error
Cross-entropy loss
gptkbp:number_of_cores 7 layers
gptkbp:performance gptkb:Image_Net
gptkb:CIFAR-10
gptkb:SVHN
gptkb:Fashion_MNIST
gptkb:MNIST
gptkbp:predecessor gptkb:Neocognitron
gptkbp:resolution 10 classes
gptkbp:successor gptkb:Alex_Net
gptkbp:training Stochastic gradient descent
Mini-batch gradient descent
gptkbp:year_created gptkb:1989