Hindsight Experience Replay

GPTKB entity

Statements (52)
Predicate Object
gptkbp:instanceOf algorithm
gptkbp:appliesTo reinforcement learning
gptkbp:developedBy Schulman_et_al.
gptkbp:enables learning from failures
gptkbp:hasRelatedPatent healthcare
finance
autonomous driving
https://www.w3.org/2000/01/rdf-schema#label Hindsight Experience Replay
gptkbp:improves sample efficiency
gptkbp:isAttendedBy research community
industry practitioners
gptkbp:isBasedOn off-policy learning
gptkbp:isConsidered state-of-the-art
gptkbp:isDocumentedIn conference proceedings
journals
academic papers
technical reports
gptkbp:isEvaluatedBy simulated environments
robotic tasks
Atari_games
gptkbp:isExaminedBy tutorials
workshops
online courses
webinars
seminars
gptkbp:isInfluencedBy Q-learning
experience replay techniques
temporal difference learning
gptkbp:isLocatedIn gptkb:PyTorch
TensorFlow
gptkbp:isPartOf gptkb:DDPG
DQN
deep reinforcement learning
prioritized experience replay
standard experience replay
gptkbp:isRelatedTo goal-conditioned reinforcement learning
gptkbp:isSupportedBy theoretical analysis
empirical studies
gptkbp:isUsedBy improve exploration
optimize policies
train agents
gptkbp:isUsedFor transfer learning
multi-task learning
other_RL_algorithms
gptkbp:isUsedIn robotics
game playing
gptkbp:isUtilizedIn continuous action spaces
discrete action spaces
gptkbp:mayHave policy learning
gptkbp:reduces training time
gptkbp:uses experience replay
gptkbp:wasAffecting 2017