Grid World

GPTKB entity

Statements (132)
Predicate Object
gptkbp:instance_of gptkb:video_games
gptkb:environment
gptkbp:adapted_into Real-World Applications
Different Scenarios
gptkbp:agent gptkb:Multi-Agent_Systems
gptkb:Agent
gptkbp:analyzes heat maps
Heat Maps
pathfinding algorithms
grid representation
Graphical Interface
3 D Models
gptkbp:can multiple agents
dynamic obstacles
varying rewards
gptkbp:can_be_customized_with Users
gptkbp:can_be_extended_by custom rules
new features
Custom Rules
additional agents
gptkbp:can_be_simulated_in Simulators
gptkbp:can_be_used_for Algorithm Benchmarking
gptkbp:can_contain Obstacles
gptkbp:can_have_different_agent_types Agent Variants
gptkbp:can_have_different_end_conditions End Game Conditions
gptkbp:can_have_different_goals Variable Goals
gptkbp:can_have_different_rules Custom Game Rules
gptkbp:can_have_different_starting_points Starting Positions
gptkbp:can_have_dynamic_elements Dynamic Obstacles
gptkbp:can_have_multiple_levels Level Design
gptkbp:can_have_multiple_outcomes Outcome Variability
gptkbp:can_have_rewards Negative Rewards
Positive Rewards
gptkbp:can_include Time Constraints
Random Events
different terrains
User Challenges
different goal states
varied agent types
Rewards and Penalties
gptkbp:difficulty_levels Difficulty Settings
gptkbp:educational_use Basic AI Concepts
gptkbp:emulation gptkb:MATLAB
gptkb:Java
gptkb:Python
gptkbp:features grid layout
gptkbp:has state space
action space
gptkbp:has_actions Move Down
Move Left
Move Right
Move Up
gptkbp:has_goal Goal State
gptkbp:has_grid_size Variable
https://www.w3.org/2000/01/rdf-schema#label Grid World
gptkbp:includes gptkb:Agent
obstacles
rewards
gptkbp:is_a Reinforcement Learning Environment
gptkbp:is_a_solution_for gptkb:Algorithms
gptkbp:is_analyzed_in Efficiency
Data Analysis Tools
Learning Strategies
Agent Behavior
gptkbp:is_considered_as a classic problem
a benchmark problem
a testbed for algorithms
gptkbp:is_evaluated_by Performance Metrics
gptkbp:is_explored_in gptkb:Workshops
Conferences
Theses
Academic Papers
gptkbp:is_implemented_in gptkb:Tensor_Flow
gptkb:Java
gptkb:C++
gptkb:Python
gptkb:R
gptkb:Keras
gptkb:Unity
gptkb:gymnasium
gptkb:Pygame
gptkbp:is_incorporated_in Feedback Loops
User Feedback
User Interactions
Learning Algorithms
User-Defined Parameters
gptkbp:is_part_of gptkb:machine_learning
AI Development
AI Research Projects
AI Curriculum
AI Simulations
gptkbp:is_popular_among gptkb:students
gptkbp:is_popular_in gptkb:machine_learning
Educational Settings
robotics research
AI community
machine learning courses
gptkbp:is_related_to Q-learning
Markov Decision Processes
policy iteration
value iteration
Markov decision processes
gptkbp:is_represented_in gptkb:Matrix
gptkbp:is_tested_for gptkb:researchers
Simulation Tools
Benchmarks
Various Algorithms
Real-Time Strategies
gptkbp:is_used_for Pathfinding
Behavior Analysis
algorithm testing
AI training
benchmarking algorithms
Algorithm Testing
simulation experiments
gptkbp:is_used_in gptkb:AI_Research
gptkb:academic_research
Game Development
educational purposes
gptkbp:is_utilized_in Simulation Studies
gptkbp:layout Custom Grids
gptkbp:modifications Parameters
User Input
parameters
grid size
agent behavior
reward structure
gptkbp:used_in reinforcement learning
gptkbp:was_a_demonstration_of Decision Making
Reinforcement Learning Concepts
gptkbp:bfsParent gptkb:gymnasium
gptkbp:bfsLayer 4