Statements (132)
Predicate | Object |
---|---|
gptkbp:instance_of |
gptkb:video_game
gptkb:organization |
gptkbp:bfsLayer |
3
|
gptkbp:bfsParent |
gptkb:stadium
|
gptkbp:adapted_into |
Real-World Applications
Different Scenarios |
gptkbp:agent |
gptkb:Multi-Agent_Systems
gptkb:government_agency Agent Variants |
gptkbp:analyzes |
heat maps
Heat Maps pathfinding algorithms grid representation Graphical Interface 3 D Models |
gptkbp:can_be |
Obstacles
multiple agents dynamic obstacles varying rewards |
gptkbp:can_be_extended_by |
custom rules
new features Custom Rules additional agents |
gptkbp:can_create |
Dynamic Obstacles
|
gptkbp:character_customization |
Users
|
gptkbp:difficulty |
Difficulty Settings
|
gptkbp:dimensions |
Variable
|
gptkbp:emulation |
gptkb:MATLAB
gptkb:Java gptkb:Library Simulators |
gptkbp:ends_at |
End Game Conditions
|
gptkbp:exhibited_at |
Decision Making
Reinforcement Learning Concepts |
gptkbp:features |
grid layout
|
gptkbp:focuses_on |
Basic AI Concepts
|
gptkbp:goal |
Variable Goals
|
gptkbp:has |
state space
action space |
gptkbp:has_achievements |
Negative Rewards
Positive Rewards |
gptkbp:has_goal |
Goal State
|
gptkbp:has_role |
Move Down
Move Left Move Right Move Up |
https://www.w3.org/2000/01/rdf-schema#label |
Grid World
|
gptkbp:includes |
gptkb:government_agency
Time Constraints obstacles rewards Random Events different terrains User Challenges different goal states varied agent types Rewards and Penalties |
gptkbp:is_a |
Reinforcement Learning Environment
|
gptkbp:is_a_solution_for |
gptkb:Algorithms
|
gptkbp:is_analyzed_in |
Efficiency
Data Analysis Tools Learning Strategies Agent Behavior |
gptkbp:is_considered_as |
a classic problem
a benchmark problem a testbed for algorithms |
gptkbp:is_evaluated_by |
Performance Metrics
|
gptkbp:is_explored_in |
gptkb:Workshops
Conferences Theses Academic Papers |
gptkbp:is_implemented_in |
gptkb:aircraft
gptkb:Java gptkb:C++ gptkb:Graphics_Processing_Unit gptkb:R gptkb:Keras gptkb:stadium gptkb:Library gptkb:Pygame |
gptkbp:is_incorporated_in |
Feedback Loops
User Feedback User Interactions Learning Algorithms User-Defined Parameters |
gptkbp:is_part_of |
gptkb:software_framework
AI Development AI Research Projects AI Curriculum AI Simulations |
gptkbp:is_popular_in |
gptkb:University
gptkb:software_framework Educational Settings robotics research AI community machine learning courses |
gptkbp:is_related_to |
Q-learning
Markov Decision Processes policy iteration value iteration Markov decision processes |
gptkbp:is_represented_in |
gptkb:Database_Management_System
|
gptkbp:is_tested_for |
gptkb:physicist
Simulation Tools Benchmarks Various Algorithms Real-Time Strategies |
gptkbp:is_used_for |
Pathfinding
Behavior Analysis algorithm testing AI training benchmarking algorithms Algorithm Testing simulation experiments Algorithm Benchmarking |
gptkbp:is_used_in |
gptkb:AI_Research
gptkb:academic_research Game Development educational purposes |
gptkbp:is_utilized_in |
Simulation Studies
|
gptkbp:layout |
Custom Grids
|
gptkbp:level |
Level Design
|
gptkbp:modifications |
Parameters
User Input parameters grid size agent behavior reward structure |
gptkbp:outcome |
Outcome Variability
|
gptkbp:rules |
Custom Game Rules
|
gptkbp:starts_at |
Starting Positions
|
gptkbp:used_in |
reinforcement learning
|