Dense Net-169

GPTKB entity

Statements (53)
Predicate Object
gptkbp:instance_of gptkb:television_channel
gptkbp:bfsLayer 4
gptkbp:bfsParent gptkb:Dense_Net
gptkbp:applies_to Image Classification
gptkbp:architectural_style gptkb:Deep_Learning
gptkbp:characteristics gptkb:Community_Center
Scalability
Global Average Pooling
Model Interpretability
Robustness to Noise
Growth Rate
State-of-the-Art Performance
Reduced Overfitting
Compression Factor
Research Interest
No Fully Connected Layers
Gradient Flow
Bottleneck Layers
Compact Model Size
Efficient Parameter Usage
Feature Reuse
High Feature Extraction Capability
High Performance on Small Datasets
Hyperparameter Tuning Required
Improved Training Speed
Layer Connectivity
Multi-Scale Feature Learning
Open Source Implementation
Transfer Learning Capability
Transition Layers
Visualization Techniques Available
Widely Used in Competitions
gptkbp:coat_of_arms 169
gptkbp:developed_by Gao Huang
gptkbp:has_achievements High Accuracy
https://www.w3.org/2000/01/rdf-schema#label Dense Net-169
gptkbp:inspired_by gptkb:Res_Net
gptkbp:is_a_framework_for gptkb:Graphics_Processing_Unit
gptkb:Keras
gptkb:Py_Torch
gptkbp:is_compared_to gptkb:Res_Net
gptkbp:performance Top-1 Accuracy
Top-5 Accuracy
gptkbp:predecessor gptkb:Dense_Net-121
gptkbp:provides_information_on gptkb:Image_Net
gptkbp:requires GPU for Training
gptkbp:successor gptkb:Dense_Net-201
gptkbp:uses gptkb:Batch_Normalization
gptkb:Dropout
Dense Connectivity
Re LU Activation Function
gptkbp:written_in gptkb:Library
gptkbp:year_created gptkb:2017