DDPG with Hindsight Experience Replay

GPTKB entity

Statements (53)
Predicate Object
gptkbp:instanceOf software
gptkbp:appliesTo Continuous_Action_Spaces
gptkbp:canLeadTo Overfitting
Simulated Environments
Real-World Tasks
gptkbp:developedBy gptkb:Google_DeepMind
gptkbp:enhances Exploration Strategies
https://www.w3.org/2000/01/rdf-schema#label DDPG with Hindsight Experience Replay
gptkbp:improves Sample Efficiency
Learning from Failures
gptkbp:isBasedOn Deterministic_Policy_Gradient
gptkbp:isBeneficialFor Sparse Reward Problems
Delayed Reward Problems
gptkbp:isEvaluatedBy gptkb:Atari_Games
Convergence Speed
Success Rate
OpenAI Gym
Average Reward
Continuous_Control_Tasks
gptkbp:isExploredIn Conferences
Workshops
Academic Papers
gptkbp:isInfluencedBy Q-Learning
Actor-Critic Methods
Policy_Gradient_Methods
gptkbp:isLocatedIn gptkb:PyTorch
TensorFlow
gptkbp:isPartOf gptkb:TRPO
SAC
PPO
gptkbp:isPopularIn Research_Community
gptkbp:isRelatedTo gptkb:Deep_Reinforcement_Learning
gptkbp:isSupportedBy Research Grants
Collaborative Projects
Open Source Libraries
gptkbp:isUsedFor gptkb:Hindsight_Experience_Replay
gptkb:DDPG
Action Selection
Value Function Approximation
Policy Optimization
gptkbp:isUsedIn Robotics
Game Playing
gptkbp:isUtilizedFor High Dimensionality
Ensure Generalization
Handle Non-Stationary Environments
Manage Computational Resources
Stabilize Training
Balance_Exploration_and_Exploitation
Continuous_Action_Spaces
gptkbp:requires Neural Networks
Hyperparameters
gptkbp:uses Actor-Critic Architecture
gptkbp:utilizes Experience_Replay_Buffer