Boltzmann Machines

GPTKB entity

Statements (55)
Predicate Object
gptkbp:instance_of gptkb:machine_learning
gptkbp:analyzes Graph Structure
Energy Landscape
gptkbp:can_be_extended_by gptkb:Deep_Boltzmann_Machines
gptkb:Variational_Autoencoders
gptkbp:can_be_used_for Dimensionality Reduction
Feature Learning
Generative Modeling
gptkbp:consists_of Hidden Units
Visible Units
gptkbp:developed_by gptkb:Geoffrey_R._Hinton
gptkbp:has_applications_in gptkb:Computer_Vision
gptkb:Natural_Language_Processing
Recommender Systems
gptkbp:has_limitations Training Complexity
Sampling Difficulty
gptkbp:has_variants gptkb:Deep_Boltzmann_Machines
Restricted Boltzmann Machines
Conditional Boltzmann Machines
https://www.w3.org/2000/01/rdf-schema#label Boltzmann Machines
gptkbp:is_characterized_by Energy Function
Stochastic Behavior
Binary States
gptkbp:is_evaluated_by gptkb:BIC
Cross-Validation
Log-Likelihood
AIC
Free Energy
gptkbp:is_implemented_in gptkb:Tensor_Flow
gptkb:Python
gptkb:Py_Torch
gptkbp:is_influenced_by Bayesian Inference
Information Theory
Statistical Physics
gptkbp:is_part_of gptkb:Artificial_Intelligence
gptkb:neural_networks
gptkb:statistical_mechanics
gptkbp:is_related_to gptkb:Model
Markov Chains
gptkbp:is_used_in gptkb:speeches
Anomaly Detection
Image Reconstruction
gptkbp:learns_by Contrastive Divergence
gptkbp:model Probability Distributions
Energy-Based Models
gptkbp:related_to gptkb:Deep_Belief_Networks
Restricted Boltzmann Machines
gptkbp:requires Training Data
gptkbp:training Gibbs Sampling
Contrastive Divergence Algorithm
Mean Field Approximation
gptkbp:type_of gptkb:Stochastic_Neural_Network
gptkbp:used_in gptkb:Deep_Learning
gptkbp:bfsParent gptkb:Geoffrey_R._Hinton
gptkbp:bfsLayer 3