Amazon Sage Maker Studio Training Compiler
GPTKB entity
Statements (75)
Predicate | Object |
---|---|
gptkbp:instance_of |
gptkb:software
|
gptkbp:built |
AWS infrastructure
|
gptkbp:designed_for |
gptkb:machine_learning
|
gptkbp:developed_by |
gptkb:Amazon_Web_Services
|
gptkbp:enables |
Data-driven decision making
Model evaluation Experiment tracking Faster convergence Automatic mixed precision training |
gptkbp:enhances |
Resource utilization
|
gptkbp:facilitates |
Data visualization
Scalable training |
https://www.w3.org/2000/01/rdf-schema#label |
Amazon Sage Maker Studio Training Compiler
|
gptkbp:improves |
Training efficiency
|
gptkbp:integrates_with |
gptkb:Sage
|
gptkbp:is_accessible_by |
Web interface
|
gptkbp:is_available_for |
Various user roles
|
gptkbp:is_available_in |
gptkb:AWS_Marketplace
|
gptkbp:is_compatible_with |
gptkb:NVIDIA_GPUs
gptkb:Jupyter_notebooks Docker containers Various programming languages |
gptkbp:is_designed_for |
Collaborative projects
Cloud-based training |
gptkbp:is_integrated_with |
gptkb:AWS_S3
gptkb:AWS_Cloud_Watch gptkb:AWS_Lambda gptkb:AWS_IAM |
gptkbp:is_optimized_for |
High-performance computing
Large datasets Real-time applications Deep learning models |
gptkbp:is_part_of |
gptkb:Amazon_Sage_Maker_Studio
AWS ecosystem AWS AI services Machine learning lifecycle |
gptkbp:is_scalable |
Enterprise-level applications
|
gptkbp:is_used_by |
Data scientists
|
gptkbp:is_used_for |
Natural language processing
Predictive analytics Model training AI model development |
gptkbp:is_used_in |
Industry applications
|
gptkbp:offers |
Collaboration tools
User-friendly interface Flexible pricing options Model parallelism |
gptkbp:provides |
Performance metrics
Version control API access Real-time monitoring Security features Documentation and tutorials Scalability options Custom training scripts Optimized training performance |
gptkbp:reduces |
Cost of training
Training time |
gptkbp:suitable_for |
gptkb:Research_and_development
|
gptkbp:supports |
gptkb:Tensor_Flow
gptkb:Py_Torch Continuous integration Batch processing Data preprocessing Data augmentation Feature engineering Hyperparameter tuning Multi-user environments Distributed training Model deployment Model retraining Multiple frameworks |
gptkbp:utilizes |
Graph optimization techniques
|
gptkbp:bfsParent |
gptkb:Amazon_Web_Services_AI
|
gptkbp:bfsLayer |
5
|