Amazon Sage Maker Studio Experiments

GPTKB entity

Statements (63)
Predicate Object
gptkbp:instance_of gptkb:Sage
gptkbp:allows custom metrics tracking
model comparison
parameter optimization
gptkbp:can_be_used_for feature engineering
A/ B testing
gptkbp:can_be_used_with various ML frameworks
gptkbp:enables automated model evaluation
reproducibility
data versioning
experiment sharing
gptkbp:facilitates collaboration among data scientists
https://www.w3.org/2000/01/rdf-schema#label Amazon Sage Maker Studio Experiments
gptkbp:integrates_with gptkb:Sage
gptkbp:is_accessible_by gptkb:AWS_Management_Console
gptkb:AWS_CLI
gptkb:AWS_IAM_users
gptkbp:is_available_in multiple AWS regions
gptkbp:is_compatible_with gptkb:Tensor_Flow
gptkb:Keras
gptkb:MXNet
gptkb:Py_Torch
gptkb:Scikit-learn
Docker containers
Python SDK
gptkbp:is_designed_for machine learning experiments
gptkbp:is_integrated_with gptkb:Amazon_Cloud_Watch
gptkb:Amazon_S3
CI/ CD pipelines
gptkbp:is_optimized_for gptkb:cloud_computing
AWS infrastructure
gptkbp:is_part_of AWS ecosystem
AWS AI services
machine learning workflow
data science lifecycle
AWS machine learning services
gptkbp:is_scalable large datasets
gptkbp:is_used_by data scientists
gptkbp:is_used_for data analysis
model deployment
model training
gptkbp:offers API access
real-time monitoring
visualization tools
gptkbp:provides experiment tracking
experiment results
experiment insights
experiment organization
experiment summaries
experiment history
experiment metadata
experiment visualization
gptkbp:supports gptkb:Jupyter_notebooks
team collaboration
data preprocessing
hyperparameter tuning
model selection
model evaluation
batch processing
data labeling
multiple experiment runs
gptkbp:bfsParent gptkb:Amazon_Web_Services_AI
gptkbp:bfsLayer 5