Statements (112)
Predicate | Object |
---|---|
gptkbp:instance_of |
gptkb:Artificial_Intelligence
|
gptkbp:adapted_into |
different games
|
gptkbp:advances |
gptkb:machine_learning
|
gptkbp:architecture |
gptkb:neural_networks
|
gptkbp:case_analysis |
AI ethics
|
gptkbp:competes_with |
human players
traditional AI programs |
gptkbp:defeated |
gptkb:Alpha_Go
gptkb:Stockfish gptkb:Elmo |
gptkbp:developed_by |
gptkb:Deep_Mind
gptkb:Tensor_Flow advanced algorithms cutting-edge technology machine learning techniques strategic games |
gptkbp:example |
general-purpose AI
|
gptkbp:first_released |
December 2017
|
gptkbp:has |
no human knowledge
|
gptkbp:has_achieved |
superhuman performance
|
gptkbp:has_applications_in |
decision making
game playing strategy optimization |
gptkbp:has_influenced |
AI research community
AI game playing strategies |
gptkbp:has_inspired |
future AI research directions
|
gptkbp:has_natural_feature |
playing multiple games simultaneously
|
gptkbp:has_publications |
gptkb:academic_journals
|
gptkbp:historical_achievement |
AI history
|
https://www.w3.org/2000/01/rdf-schema#label |
Alpha Zero
|
gptkbp:input_output |
game state
move probabilities |
gptkbp:inspired |
subsequent AI systems
|
gptkbp:is_a_tool_for |
understanding AI capabilities
|
gptkbp:is_analyzed_in |
its decision-making process
|
gptkbp:is_based_on |
gptkb:Alpha_Go_Zero
gptkb:Monte_Carlo_Tree_Search |
gptkbp:is_capable_of |
learning from scratch
|
gptkbp:is_cited_in |
AI literature
|
gptkbp:is_compared_to |
human players
traditional AI other AI systems human intuition in games |
gptkbp:is_considered |
a landmark achievement
a pioneer in AI research |
gptkbp:is_considered_as |
breakthrough in AI
|
gptkbp:is_discussed_in |
AI conferences
|
gptkbp:is_evaluated_by |
performance metrics
tournaments peer reviews match results |
gptkbp:is_featured_in |
gptkb:documentaries
|
gptkbp:is_influenced_by |
gptkb:strategy
previous AI models |
gptkbp:is_known_for |
its versatility
generalized learning approach playing multiple games |
gptkbp:is_known_to |
adapt strategies
|
gptkbp:is_notable_for |
fast learning capabilities
|
gptkbp:is_part_of |
gptkb:Deep_Mind's_AI_portfolio
AI advancements AI evolution Deep Mind's research portfolio AI game playing systems Deep Mind's innovations Deep Mind's research the evolution of game AI. |
gptkbp:is_played_by |
gptkb:Go
gptkb:chess_match shogi |
gptkbp:is_recognized_by |
AI experts
AI researchers worldwide |
gptkbp:is_recognized_for |
its efficiency
its innovative approach self-learning capabilities innovative algorithms |
gptkbp:is_supported_by |
high-performance computing
research funding AI community |
gptkbp:is_tested_for |
controlled environments
various opponents various strategies human champions various AI opponents |
gptkbp:is_trained_in |
game data
self-play |
gptkbp:is_used_in |
AI competitions
improve AI algorithms |
gptkbp:is_utilized_in |
research projects
|
gptkbp:number_of_games |
millions
|
gptkbp:outperformed |
gptkb:Alpha_Go
gptkb:Stockfish gptkb:Elmo |
gptkbp:performance |
AI development
|
gptkbp:product |
Deep Mind's research team
|
gptkbp:provides_training_for |
requires no human intervention
|
gptkbp:rank |
world champion level
|
gptkbp:released_in |
gptkb:2017
|
gptkbp:research |
academic institutions
|
gptkbp:result |
gptkb:Nature
|
gptkbp:significance |
gptkb:AI_technology
|
gptkbp:successor |
gptkb:Alpha_Go
|
gptkbp:training |
gptkb:Monte_Carlo_Tree_Search
several hours |
gptkbp:uses |
reinforcement learning
|
gptkbp:utilizes |
gptkb:neural_networks
GPU acceleration |
gptkbp:was_a_demonstration_of |
generalization ability
the power of self-learning AI |
gptkbp:bfsParent |
gptkb:Deep_Mind
gptkb:Alpha_Go |
gptkbp:bfsLayer |
5
|