Ada Grad

GPTKB entity

Statements (58)
Predicate Object
gptkbp:instance_of gptkb:Artificial_Intelligence
gptkbp:adapted_into learning rates based on past gradients
gptkbp:applies_to gptkb:microprocessor
support vector machines
gptkbp:benefits large datasets
sparse data
gptkbp:can_be_used_with other optimization techniques
gptkbp:can_lead_to rapid convergence
overfitting in some cases
gptkbp:has_variants gptkb:Ada_Delta
https://www.w3.org/2000/01/rdf-schema#label Ada Grad
gptkbp:improves learning rate adaptation
gptkbp:introduced gptkb:2011
gptkbp:is_a_framework_for many other optimizers
gptkbp:is_characterized_by accumulating past gradients
gptkbp:is_designed_for stochastic gradient descent
gptkbp:is_effective_against feature selection
high-dimensional data
large-scale machine learning
multi-class classification problems
non-sparse data
gptkbp:is_implemented_in gptkb:Graphics_Processing_Unit
gptkb:Keras
gptkb:Py_Torch
gptkbp:is_known_for its simplicity
its robustness
gptkbp:is_often_compared_to SGD
gptkbp:is_often_used_in image processing
financial modeling
data mining
gptkbp:is_optimized_for nan
gptkbp:is_popular_in natural language processing
training deep learning models
gptkbp:is_related_to RMS Prop
gptkbp:is_used_for convex optimization problems
gptkbp:is_used_in gptkb:software_framework
computer vision
deep learning
time series analysis
reinforcement learning
recommendation systems
gptkbp:is_vulnerable_to hyperparameter tuning
gptkbp:key many machine learning frameworks
gptkbp:proposed_by Duchi et al.
gptkbp:requires more memory than standard SGD
gptkbp:sensor initial learning rate
gptkbp:suitable_for online learning
real-time applications
gptkbp:technique can be applied to various domains.
can handle noisy data
can improve model accuracy
minimizing loss functions
reduces the learning rate over time
gptkbp:type_of adaptive learning rate method
gptkbp:uses per-parameter learning rates
gptkbp:variant gradient descent
gptkbp:bfsParent gptkb:Adadelta
gptkbp:bfsLayer 5