Statements (58)
Predicate | Object |
---|---|
gptkbp:instance_of |
gptkb:Artificial_Intelligence
|
gptkbp:adapted_into |
learning rates based on past gradients
|
gptkbp:applies_to |
gptkb:microprocessor
support vector machines |
gptkbp:benefits |
large datasets
sparse data |
gptkbp:can_be_used_with |
other optimization techniques
|
gptkbp:can_lead_to |
rapid convergence
overfitting in some cases |
gptkbp:has_variants |
gptkb:Ada_Delta
|
https://www.w3.org/2000/01/rdf-schema#label |
Ada Grad
|
gptkbp:improves |
learning rate adaptation
|
gptkbp:introduced |
gptkb:2011
|
gptkbp:is_a_framework_for |
many other optimizers
|
gptkbp:is_characterized_by |
accumulating past gradients
|
gptkbp:is_designed_for |
stochastic gradient descent
|
gptkbp:is_effective_against |
feature selection
high-dimensional data large-scale machine learning multi-class classification problems non-sparse data |
gptkbp:is_implemented_in |
gptkb:Graphics_Processing_Unit
gptkb:Keras gptkb:Py_Torch |
gptkbp:is_known_for |
its simplicity
its robustness |
gptkbp:is_often_compared_to |
SGD
|
gptkbp:is_often_used_in |
image processing
financial modeling data mining |
gptkbp:is_optimized_for |
nan
|
gptkbp:is_popular_in |
natural language processing
training deep learning models |
gptkbp:is_related_to |
RMS Prop
|
gptkbp:is_used_for |
convex optimization problems
|
gptkbp:is_used_in |
gptkb:software_framework
computer vision deep learning time series analysis reinforcement learning recommendation systems |
gptkbp:is_vulnerable_to |
hyperparameter tuning
|
gptkbp:key |
many machine learning frameworks
|
gptkbp:proposed_by |
Duchi et al.
|
gptkbp:requires |
more memory than standard SGD
|
gptkbp:sensor |
initial learning rate
|
gptkbp:suitable_for |
online learning
real-time applications |
gptkbp:technique |
can be applied to various domains.
can handle noisy data can improve model accuracy minimizing loss functions reduces the learning rate over time |
gptkbp:type_of |
adaptive learning rate method
|
gptkbp:uses |
per-parameter learning rates
|
gptkbp:variant |
gradient descent
|
gptkbp:bfsParent |
gptkb:Adadelta
|
gptkbp:bfsLayer |
5
|