AWS SageMaker Pipelines

GPTKB entity

Statements (58)
Predicate Object
gptkbp:instanceOf gptkb:Cloud_Computing_Service
gptkbp:allows custom pipeline steps
gptkbp:can_be events_from_AWS_services
gptkbp:compatibleWith various ML frameworks
gptkbp:constructedIn serverless architecture
gptkbp:enables CI/CD for machine learning
https://www.w3.org/2000/01/rdf-schema#label AWS SageMaker Pipelines
gptkbp:integratesWith gptkb:AWS_Glue
gptkb:Amazon_S3
gptkb:AWS_Lambda
Amazon SageMaker
gptkbp:is_accessible_by gptkb:AWS_Management_Console
gptkb:AWS_CLI
AWS_SDKs
gptkbp:is_available_in multiple_AWS_regions
gptkbp:is_designed_to data scientists
machine learning engineers
reduce_time_to_market_for_ML_models
gptkbp:is_integrated_with gptkb:Amazon_CloudWatch
gptkbp:is_monitored_by gptkb:AWS_CloudTrail
gptkbp:is_part_of AWS SageMaker
AWS AI/ML ecosystem
gptkbp:is_used_in Jupyter notebooks
third-party tools
automate data workflows
end-to-end machine learning workflows
automated retraining
collaborative machine learning projects
create reproducible experiments
manage ML lifecycle
streamline model deployment
gptkbp:offers visualization tools
gptkbp:provides security features
logging and monitoring
automated machine learning workflows
model deployment capabilities
resource management features
integration with Git repositories
parameter store integration
template-based pipeline creation
version control for models
gptkbp:suitableFor large-scale machine learning projects
gptkbp:supports data preprocessing
hyperparameter tuning
parallel processing
A/B testing
model evaluation
data augmentation
custom metrics
model training
data versioning
data drift detection
model performance tracking
multi-model endpoints
model explainability
batch transform jobs
model registry
gptkbp:uses step functions